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A study of the truncation errors introduced by the use of nonuniform grids is 
presented. It is shown that the use of certain stretched coordinates has several advant- 
ages for the numerical study of flows with boundary layers. 

Finite-difference schemes that use grids with uniform spacing are the simplest 
and most accurate, but they are not satisfactory in problems with boundary layers. 
If the number of points is not large enough to resolve the boundary layer (at least 
two or three points within it) then the numerical solution is apt to have gross 
errors even in the interior. The use of enough grid points to resolve the boundary 
layer then makes the total computation time unacceptably large. The problem 
can be solved by the introduction of an irregular net with smaller spacing near the 
boundary. 
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FIG. 1. Non-uniform grid defined through the use of a stretched coordinate. 
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One possibility is to divide the grid intervals by two or more within the region 
of interest. This method has two disadvantages: first, it is necessary to interpolate 
values of the variables or their derivatives at intermediate points and weak 
numerical instabilities usually arise at the boundary between the large and small 
grid size, and second, this method cannot give really small grid intervals without 
greatly increasing the number of intermediate interpolations. Crowder and Dalton 
[4] have shown that, in a boundary-layer problem, the use of grids with discon- 
tinuously varying resolution gives worse overall errors than a regular grid with the 
same number of points. Another possibility is to vary the grid intervals con- 
tinuously, avoiding the necessity of intermediate interpolations. Consider, for 
example, a functionf(x) defined on a nonuniform grid (Fig. 1). 

Making a Taylor expansion about the center point xi , there are two “centered” 
combinations of the functions at three points that give an appoximation of the 
first derivative fir: 
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which has second-order errors. If Ax~+~,~ = Ax~-~,~ , both (1) and (2) reduce to 
the usual centered-difference scheme. However, there is only one combination of 
the three points that gives an approximation of the second derivativefir, 
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which has first-order errors. Note that the second term of the right-hand side of 
Eq. (1) and (3) is the “extra error” introduced by the use of a nonuniform grid, 
while the following terms are equivalent to the second-order errors that are made 
when constant spacing is used. 
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Sundqvist and Veronis [S] reduced the “extra error” in Eq. (3) to second order 
by choosing the intervals such that 

&+1/z - Axi-,,, = O(AX~~~,~)~ (4) 

but they still use (2) instead of (1). This method allows some improvement of the 
resolution near the boundary but it still requires a large number of points to 
reduce significantly the grid intervals there. 

Suppose now that we vary the grid intervals by defining a stretched coordinate 6, 

x = 48 (5) 

in such a way that the grid intervals Of are constant. If we are studying a function 
defined in a region 0 < x < 1 with a boundary layer at x = 0, then x(5) should 
have the following properties: 

(a) dx/d[ should be finite over the whole interval. If dx/d[ becomes infinite 
at some point then the mapping x = x(t) will give a poor resolution near that point, 
which cannot be improved by increasing the number of points, since 

Ax es (dx/dfJ) . At. 

(b) dx/dc = 0 t a x = 0. This will insure a high resolution near x = 0. 
Elsewhere dx/dt should be different from zero. 

Making a Taylor-series expansion of x about xi we find 

Ax~-~,~ = xi - xi-l 

since 
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Therefore, 

Axi+,,, + Ax<-,,, = Af[2(g)i + 
i!y ($)i + . ..I ) (8) 

Axi+,/, -A+-112 = (A02[(+) + 
q ggi + . ..I. (9) 

z 

Introducing (6)-(9) into (1) and (3) we get 
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Equations (10) and (11) show that any smooth function x(g) that satisfies con- 
ditions (a) and (b) will give an approximation of the first and second derivatives 
with second-order accuracy, since the “extra truncation errors” due to the non- 
uniformity of the grid are of second order in A[. This useful result is true even 
near the boundary layer where the variations of Axt may be of the same order as 
Ax; so that truncation errors may be of first order with respect to Axi [Eqs. (1) 
and (3)], but where the intervals Axi are very small so that the overall truncation 
error remains small. 

The form of Eqs. (10) and (11) suggests the convenience of choosing a function 
x = P,(t), where P, is a polynomial of degree greater than one, and in particular 
the advantage of the choice of the simple function (see Fig. 2) 

x = 5”, (12) 
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FIG. 2. Distribution of grid points when the stretched coordinate x = p is used. 

which has the following attractive properties: 

(9 

This implies that near x = 1, Ax w  2/N, where N is the number of intervals 
N = l/At. This shows that at worst the stretched coordinate gives half the reso- 
lution of the uniform grid, which is not bad at all. 

(ii) The first interior point at the boundary x = 0 will be such that 

Ax,,, = (A@ = l/P. (14) 

Then the resolution near the boundary layer increases wtih N2 and not with N as 
the uniform grid. The requirement of having, say, at least three grid points within 
a boundary layer of relative width d is fulfilled if (3402 < d, or N > 3/d/a 
compared N > 3/d in the case of a uniform grid. 

(iii) d2x/df2 = 2; d3xldt3 = 0; ..‘. 

Equations (10) and (11) reduce to 
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(15) 

(16) 

(17) 

(17) 
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and we see that the “extra truncation error” is independent of x (except for the 
variations of the derivatives off). 

When a boundary layer is expected both at x = 0 and at x = 1, a convenient 
stretched coordinate is defined by the symmetric function 

x = sin2 --& 5‘ , 
i 1 

with 

dx/dc = r[x(l - x)]. (19) 

It behaves like x = [(n/2)5]” near x = 0, like x = { 1 - [(n/2)( 1 - [)I”} near x = 1, 
and is rather linear in the interior (see Fig. 3). At the boundaries, the first interior 
point it at a distance 

Ax m 7?/(4N2) (20) 

and at the center point, x = 0.5, 

Ax w 7r/(2N). 

1 -l 1 
FIG. 3. Distribution of grid points when the stretched coordinate x = sin2 (n/2 I) is used. 

Both types of stretched coordinates have been successfully used in two-dimen- 
sional numerical models of the atmosphere of Venus (Kalnay de Rivas [5]). 

We should point out here that in problems in which the equations of fluid 
motion are integrated with respect to time, the space intervals used in the criteria 
of linear computational instability should be, in general, the smallest Axi . The 
methods developed to avoid nonlinear computational instability can be easily 
adapted to nonuniform grids (see Arakawa [l] and Bryan [3]). 
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In some cases boundary conditions on the normal derivative of the function whose 
solution is being obtained, require the definition of a point immediately outside 
the boundary. This problem can be solved defining an external grid point located 
at the same distance from the boundary as the first interior point, even though 
this doesn’t correspond to the definition of the stretched coordinate, which has 
dxld( = 0 at the boundary. This poses no difficulty since at the boundary the 
normal derivative will be computed on a locally uniform grid with very small 
intervals, and therefore the truncation errors will be very small. 

Finally we compare our results with those obtained by Sundqvist and Veronis 
[8] who solved numerically the following differential equation proposed by 
Stommel [7] for the wind-driven circulation in a homogeneous ocean: 

c(yY - t)) + *’ = -sin x for E = 0.05, 

t/l=0 at x = 0, 7r, 

which has a boundary layer at x = 0. Sundqvist and Veronis set 

(21) 

Axi+l12 - Axi-I/z = (~i~)(Axi-~/J~, lx = 2. (22) 

The exact solution of (21) is also included in their paper. 
Figure 4 compares the percentage errors introduced by the Sundqvist-Veronis 

grid with those introduced by using the stretched coordinate x = 6”. Note that not 
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FIG. 4. Comparison of the results obtained by Sundqvist and Veronis and by using the 
stretched coordinate x = I”. 
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only are the latter smaller, but that there is no tendency for the relative errors to 
grow as x -+ 0, even though the function itself tends to zero. 

If we compare (22) with (9) and (7) we see that the choice (22) corresponds 
approximately to the use of a stretched coordinate defined by the differential 
equation 

which has the solution 

d2x/dt2 = (+-)(dx/df)2, (23) 

,$ = e-wdx~ (24) 

Then the grid spacing is given by 

and 

Ax w  (7r/ol)[(l - e-“)/N] 

Llx w  (n/a)[(ea - 1)/N] 

near x = 0 (25) 

near x = 7r. (26) 

This is obviously not a good choice of x(t) because as Sundqvist and Veronis 
pointed out, to obtain a good resolution near the origin, 01 should be large, and that 
would spoil the computations near x = 71. 

Another advantage of the method proposed here is that the actual spacing of the 
grid points is obtained immediately, once N is given, whereas the method proposed 
by Sundqvist and Veronis requires the solution of a rather cumbersome equation 
for rlx,,, . 

Beardsley [2] used the stretched coordinate x = t112 to solve a problem with a 
boundary layer near x = 1. Since dx/d.$, d2x/dt2,... -+ co as x + 0, an inspection 
of Eq. (10) and (11) shows clearly why the truncation errors that he obtained were 
very large near x = 0. Near x = 1 this stretched coordinate gives dx * 1/(2N), 
so that it only increases by 2 the resolution of a regular grid. 

Roberts [6] has developed a more general though less simple method similar to 
the one presented here. He defines a stretched coordinate by superimposing a 
suitably chosen function of the family of logarithms which gives the high resolution 
needed in the boundary on a linear function of the physical coordinate which 
gives enough resolution in the interior. 
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